5-6 Videos Guide

5-6a

- Description of and notation for parametric surfaces
- $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$
- Parametric equations are $x=x(u, v), y=y(u, v), z=z(u, v)$
- Planes as parametric surfaces
- A plane that contains a point P_{0}, which corresponds to $\mathbf{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and vectors \mathbf{a} and \mathbf{b} has equation $\mathbf{r}(u, v)=\mathbf{r}_{0}+u \mathbf{a}+v \mathbf{b}$
- Spheres as parametric surfaces
- A sphere of radius a and center $(0,0,0)$ is parameterized as

$$
\mathbf{r}(\phi, \theta)=a \cos \theta \sin \phi \mathbf{i}+a \sin \theta \sin \theta \mathbf{j}+a \cos \phi \mathbf{k}, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi
$$

- Functions as parametric surfaces
- A surface given by a function $z=f(x, y)$ is parametrized as $\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+f(x, y) \mathbf{k}$

Exercises:

5-6b

- Identify the surface with the given vector equation.
- $\mathbf{r}(u, v)=u^{2} \mathbf{i}+u \cos v \mathbf{j}+u \sin v \mathbf{k}$
- $\mathbf{r}(s, t)=\langle 3 \cos t, s, \sin t\rangle,-1 \leq s \leq 1$

5-6c

- Find a parametric representation for the surface.
- The part of the part of the cylinder $x^{2}+z^{2}=9$ that lies above the $x y$-plane and between the planes $y=-4$ and $y=4$.
- The part of the plane $z=x+3$ that lies inside the cylinder $x^{2}+y^{2}=1$.

5-6d

- Tangent planes
- The tangent plane to a surface given by $\mathbf{r}(u, v)$ has normal vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$

Exercise:

- Find an equation of the tangent plane to the given parametric surface at the specified point.
$x=u^{2}+1, y=v^{3}+1, z=u+v ;(5,2,3)$
5-6e
- Surface area
- If a smooth parametric surface S is given by $\mathbf{r}(u, v),(u, v) \in D$ and S is covered exactly once as (u, v) covers D, then $A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$
- If $z=f(x, y)$, then $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}$
- For a surface of revolution obtained by rotating $f(x), a \leq x \leq b$ about the x axis, use $x=x, y=f(x) \cos \theta, z=f(x) \sin \theta, 0 \leq \theta \leq 2 \pi$, so that $A(S)=\int_{a}^{b} \int_{0}^{2 \pi}\left|\mathbf{r}_{x} \times \mathbf{r}_{\theta}\right| d A$

5-6f

Exercise:

- Find the area of the part of the surface $z=4-2 x^{2}+y$ that lies above the triangle with vertices $(0,0),(1,0)$, and $(1,1)$.

