5-6 Videos Guide

5-6a

- Description of and notation for parametric surfaces
 - $\circ \mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$
 - Parametric equations are x = x(u, v), y = y(u, v), z = z(u, v)
- Planes as parametric surfaces
 - A plane that contains a point P_0 , which corresponds to $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$, and vectors **a** and **b** has equation $\mathbf{r}(u, v) = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}$
- Spheres as parametric surfaces
 - A sphere of radius a and center (0, 0, 0) is parameterized as
 - $\mathbf{r}(\phi, \theta) = a \cos \theta \sin \phi \, \mathbf{i} + a \sin \theta \sin \theta \, \mathbf{j} + a \cos \phi \, \mathbf{k}, \, 0 \le \phi \le \pi, \, 0 \le \theta \le 2\pi$
- Functions as parametric surfaces
 - A surface given by a function z = f(x, y) is parametrized as $\mathbf{r}(x, y) = x \mathbf{i} + y \mathbf{j} + f(x, y) \mathbf{k}$

Exercises:

5-6b

- Identify the surface with the given vector equation.
 - $\circ \mathbf{r}(u,v) = u^2 \mathbf{i} + u \cos v \mathbf{j} + u \sin v \mathbf{k}$
 - $\circ \mathbf{r}(s,t) = \langle 3\cos t, s, \sin t \rangle, \ -1 \le s \le 1$

5-6c

- Find a parametric representation for the surface.
 - The part of the part of the cylinder $x^2 + z^2 = 9$ that lies above the *xy*-plane and between the planes y = -4 and y = 4.
 - The part of the plane z = x + 3 that lies inside the cylinder $x^2 + y^2 = 1$.

5-6d

- Tangent planes
 - The tangent plane to a surface given by $\mathbf{r}(u, v)$ has normal vector $\mathbf{r}_u \times \mathbf{r}_v$

Exercise:

• Find an equation of the tangent plane to the given parametric surface at the specified point.

 $x = u^{2} + 1$, $y = v^{3} + 1$, z = u + v; (5,2,3)

5-6e

- Surface area
 - If a smooth parametric surface S is given by $\mathbf{r}(u, v)$, $(u, v) \in D$ and S is covered exactly once as (u, v) covers D, then $A(S) = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| dA$

- If z = f(x, y), then $|\mathbf{r}_u \times \mathbf{r}_v| = \sqrt{1 + (f_x)^2 + (f_y)^2}$
- For a surface of revolution obtained by rotating f(x), $a \le x \le b$ about the xaxis, use x = x, $y = f(x) \cos \theta$, $z = f(x) \sin \theta$, $0 \le \theta \le 2\pi$, so that $A(S) = \int_{a}^{b} \int_{0}^{2\pi} |\mathbf{r}_{x} \times \mathbf{r}_{\theta}| dA$

5-6f

Exercise:

• Find the area of the part of the surface $z = 4 - 2x^2 + y$ that lies above the triangle with vertices (0, 0), (1, 0), and (1, 1).